Kankool frame installation – Part II …

Hi all,

I’ve done some more installation of the Wire-in-tube (WIT) system for points and signals at Kankool.

Some timber bases were made to fix the WIT hardware to underneath the spline at the Willow Tree end of Kankool loop.

These have been made adjustable to allow for final tweaks when the turnout throwbars are installed.

The photo below shows the mounting block for the WIT signal hardware for the two Down starters on the left hand side, as well as the mounting block for the WIT point hardware for the runaway turnout in the loop and the mainline catchpoint.

Bases for fixing of WIT hardware


The next photo shows a shot from underneath the spline of the mounting block for the Up Home Main & Loop bracket signal and the mainline turnout to the loop.

Base for fixing of WIT hardware


The next photo shows a shot above the turnout complex at the Willow Tree end.  The loop of WIT that can be seen is to connect both mainline and runaway points to a single cable (lever #7).


This now completes the WIT installation for the Willow Tree end of Kankool.  Scenery installation can now commence in this area.


Chilcott’s Creek bridge assembly – Part V …

Hi all,

I have recently been redoing the weathering on the Chilcott’s Ck bridge abutments and piers. I wasn’t happy with my first attempt using the acrylic crayon powders quite a while ago.  So, this time using oil paints, I applied an all over light grey colour using a stippling brush and I think it has produced a neat effect.  Then using other colours like black, white and more grey, I have again stippled over the top for a random effect.  For the rust staining, I used the oils again but washed them down with turps.  Again pretty happy with the results so far.

abutment weathering take 2

abutment weathering take 2


I have also finished the “base” grey coat on the piers and will let that dry before moving onto the rust staining.

pier weathering take 2


I have also made some more progress on the Chilcott’s Ck bridge scene over the last few days.  A slight change of plans to what I mentioned previously, in that I have decided to fix the timber sub-module base in place then add the scenery foam around and on top of it.  The abutments will then be fixed in place, along with the piers.  Scenery including dirts and grasses will then be applied, and hopefully some ‘water’ in the creek!  The bridge span will then be fixed in place once all this has been completed.  Pictures show all the foam pieces and the sub-module base temporarily in place.

A plywood base was fixed in place to provide support for the foam.

plywood base and sub-module in place


With the bridge sub-module sitting in place, a jigsaw of various pieces of foam were cut to fit.  First off were two pieces front and back to continue the creek bed, which was drawn in and then routed out to the same depth as on the timber sub-module.

creek bed foam in place


Then other pieces of foam were cut and shaped to fit the previously made pieces under the bridge.


The last two pictures show the bridge span and piers temporarily in place to give an idea of how the scene will look.  Final shaping of the foam will be done when the pieces are fixed down.


Chilcott’s Creek bridge assembly – Part IV …

Hi all,

Recently I have continued work on the Chilcott’s Creek bridge scene.

Back in December 2014, I made a post where I had started to weather the bridge piers and abutments.

I was never really happy with how the colour on the abutments had turned out, so I decided to redo them.

Using some new oil based paints and some new techniques, I mixed up a new lighter colour of grey and applied to the abutments.  I am happy so far with the result.  The paint was stippled on and has given a rougher surface appearance.  I’ll redo the rust stains as well.  I think I will also redo the piers.

I also added the small extensions to the wingwalls.

re-done abutment weathering

re-done abutment weathering


The plan was always to build the bridge on a sub-assembly and then slot it into place.  As the base of the sub-module needed to be near to perfectly flat, I decided to laminate a piece of 3-ply to another piece of hardwood.  I roughly marked out the future riverbed and removed the first layer of ply using a router.  My idea is to eventually try my hand at some model water.

Chilcott's Creek riverbed

Chilcott's Creek riverbed


I have also started on forming the scenery around the bridge.  The idea is to form up the base scenery foam, add the dirts, grasses etc then assemble the bridge, fix the sub-assembly into the layout, levelling up as I go.  Anyway, we’ll soon see if that plan works!!

Scenery forming around bridge

Scenery forming around bridge

Scenery forming around bridge

The last photo shows the bridge & piers temporarily in place.  You get the idea!!


Some months ago I started laying tieplates on the bridge and have fixed one rail in place.  I had been thinking of ways to do it easily, including making a jig, but Andrew suggested I just line them up against a straight edge.

The frets of the tieplates were masked off where the base of the rail sits, painted with some Krylon flat brown paint, then dusted a ‘rusty’ colour with some powders.

The underside of the tieplates were then coated with Pliobond glue.

sleeper plate masking

sleeper plates painted


The individual tieplates were then cut out and located on the transoms, one at the end and the other about 40 transoms away.  Using a soldering iron, the tieplates are bonded to the transoms. The heat activates the Pliobond.  This then gave me two points to line the straight edge against.  The straight edge was clamped to the bridge.  More tieplates were then bonded to the transoms.  The process was repeated along the bridge.

laying out the sleeper plates

bonding the sleeper plates to the transoms


The next step was to fix one length of rail to this first run of tieplates.  This was done by applying the Pliobond to the underside of the rail as well as the tops of the tieplates, then locating the rail in position and carefully applying heat to the top of the rail using an old clothes iron and gradually moving along the length of the bridge.  The bond appears to be OK so far.

The plan is to then, using gauges, locate more tieplates underneath the second rail and repeat the above process.


Kankool frame installation – Part I …

Hi all,

I have started to install the wire-in-tube (WIT) system that will operate the signals and points at Kankool.

The system is designed and sold by Modratec in Brisbane.

I am also using 3D printed signal actuators designed by Ray Pilgrim.  Check out his Signals Branch blog.

The actuators will be mounted in a block of wood that has been attached to the side of the spline in the appropriate location.  My own signals will then be attached to the base of the actuator.

signal mount

WIT and signal actuator

WIT and signal actuator

The photo above shows a view underneath one of the WIT termination blocks.  The cable from the lever frame is on the left and another wire then connects from the brass block to the lever on the signal actuator.

The WIT cables from the points and signals all come back to a termination block at the lever frame.

WIT termination at lever frame

WIT termination at lever frame

Refer back to a post here for a view of where the lever frame will sit.  Go to the last photo.

I have also added extra cranks and linkages to the levers of the Kankool frame to convert from a vertical to horizontal movement.

extra cranks & linkages

extra cranks & linkages

I had a mate laser cut some new cranks and got some clevises cast in brass to connect them altogether.  The wire throw to the points and signals will attach to the bottom clevis.

I realised I needed to commence the WIT installation before any scenery work could start, so I have already installed cables to nearly all signals, but I have to work on the turnout throwbars before I can terminate the point cables.


Up Staging Yard changes …

Hi all,

Every so often, I open up my listing of trains I am modelling and add more information to the spread sheet where I calculate model train lengths and tonnage.

The longest trains that will run on the layout are the Up block wheat and coal, and all of these have four locos up front, with generally two of these being the bank engines.

I was always hoping to be able to run prototypical length trains, but found I had an issue with the road lengths in the Up Staging.

The original design of the Up Staging had the following standing room lengths (in mm) for trains:

5400; 4340; 4200; 3570; 3500; 3500; 2790; 2790.

Currently my four longest trains (to prototypical length & tonnage) are:

Up Wheat, Quad locos + 26 x WTY + brakevan = 5280mm

Up Wheat, Quad locos + 26 x WTY + brakevan = 5260mm

Up Coal, Quad locos + 21 x CHS + brakevan x 2 = 4910mm

Up Coal, Quad locos + 21 x CHS + brakevan = 4800mm

As can be seen, there was no way I was going to be able to fit these trains into the four longest roads.

In hindsight, I should have made the Up yards much longer than the Down yards, but instead made them roughly equal lengths.

So to accommodate the long trains, I have decided to rebuild the Up yards using 3-way turnouts in certain locations to lengthen the roads.  I will only have to build three new 3-way turnouts.

The revised Up Staging now gives me the following standing room lengths in mm:

5495; 5080; 5060; 4765; 4310; 4070; 4030; 4020.

On one of the wheat trains, I may have to drop up to two wagons, and on one of the coal trains, one wagon.  This will still give me near prototypical length trains.


staging yard changes

The drawing above shows the differences between the old and new yard design.  The majority of roads are now significantly longer than in the old design.


More foam roadbed & CV track installation …

Hi all,

I have completed installation of the foam roadbed all the way from Chilcott’s Ck almost to Ardglen.  I have also laid quite a bit more CV track base from Chilcott’s Ck through Kankool to just before the first peninsula.

The process was the same as outlined here when I did the Temple Court section.

Under where the turnouts are located at Kankool, I laid 3mm cork down instead of the foam.  This was done to make it easier cutting out a hole for the future throwbar rather than trying to cut it out of the soft foam.  In hindsight, I probably only needed a small section of cork directly under the toe of each turnout rather than under the whole turnout.  That is what I will do on future turnouts.

cork laid under turnouts

cork laid under turnouts


Taking on board an idea from Andrew, I also commenced installing strips of the high density yellow foam to the sides of the spline.  The idea here is to lay continuous foam strips along the spline to not only allow for shaping the trackbed, ballast profile and drainage, but to also make it easier to install the main scenery foam later on, rather than trying to cut many small irregularly shaped foam pieces to try and fit against the spline.

scenery foam strips attached to spline



New vee crossings & more turnout progress …

Hi all,

Following on from this post back in August 2015 where I outlined the move from Proto-87 standards to NMRA Fine:HO, the new Code 70 vee crossings arrived back in November courtesy of Keiran Ryan.

The picture below show the two new vee crossing etches, 1 in 6 on the left, 1 in 8 on the right.

new vee crossings


The picture below shows a completed crossing prior to being removed from the fret.

completed crossing


After I then assembled a few of the crossings, I proceeded to remove the P87 ones from the two turnout assemblies for Kankool and retrofit the new ones.  The 1 in 8 is on the left, the 1 in 6 on the right.

1 in 8 crossing1 in 6 crossing









Below is a shot of the completed turnout complex at the Werris Ck end of Kankool.  All that is left to do here is to fit the throwbars and paint.

Kankool turnouts


Before I could start laying the foam roadbed, I had to make cut-outs in the spline at the throwbar locations for each turnout at Kankool.  I used a multi-tool with a small saw blade held vertically.

throwbar hole

throwbar hole

throwbar hole



2016 First Quarter Update …

Hi all,

It’s been a while since my last post.

Over the next few days, I will post in quick succession to bring you up to date on recent happenings.


Chilcott’s Ck bridge transoms – Part III …

Hi all,

Today I made another jig to enable application of white paint on the ends of the transoms.

Up until a few days ago, I had no idea as to why the ends were painted white, but after obtaining some info from two fellow modellers, it appears it was a form of timber preservation treatment.

Transom jig for painting white ends

The simple jig was made from styrene strip and it sat over the transom leaving a six inch piece exposed at the end.  Some acrylic white paint was then dry brushed on the top, sides and end of each transom.  The resultant finish I think looks like the white paint has been there a few years.

The following two pictures show the finished result.

Finished transoms with white ends

Finished transoms with white ends


Chilcott’s Ck bridge transoms – Part II …

Hi all,

Transom installation is now complete on the Chilcott’s Ck bridge.

After the initial staining mentioned in the previous post, I thought the transoms ended up a bit too light, so I attacked them with some of the crayon powders, and I think they look heaps better.  The plan is to do more weathering using the powders after the rails have been installed.

I had thought a fair bit on what type of glue to use for fixing the transoms to the girders, and after seeking advice from fellow modellers, I decided to use Tarzan’s Grip.  I had thought about using 5 minute Araldite, but there’s just not enough working time with the stuff, and the normal Araldite takes hours to completely set.  The Tarzan’s Grip cures in thirty minutes and remains usable for about ten minutes.

There are ninety eight transoms on the bridge and I decided to fix down ten at a time.

The first transom was fixed in place, ensuring it was square to the girders, and allowed to set before commencing the others.

The spacing between transoms was made at eight scale inches using pieces of styrene strip.

transoms with spacers


After gluing a batch of transoms in place, some old Kadee uncoupling magnets are placed on top to keep things flat and using the bottle of Tarzan’s Grip as a weight, are left to cure for thirty minutes.

transoms with weight


A progress shot.

transoms on bridge


Transoms complete!

transoms complete


Next job is to make a jig for locating the tieplates on the transoms.


%d bloggers like this: