Kankool frame installation – Part III(a) …

Hi all,

Whilst recently carrying out final adjustments to the wire-in-tube controls to turnouts 7, 9 and 12 at Kankool, I discovered a minor problem with the control of turnouts 7.  On the prototype, lever 7 controlled two turnouts, both labelled ‘7’.  See the diagram below.  These two turnouts operated off the same single rodding run, as they were required to operate in tandem.


My original thought was that I would be able to simulate this in model form by operating both turnouts from the one control wire from the frame.  This was done by passing the control wire from the frame through turnout 7 on the loop first, then terminate at turnout 7 on the main.  This seemed like a good idea in theory, but when it came to adjusting the throw of each turnout, I couldn’t get both to operate successfully in tandem.

So I decided to terminate the existing control wire at turnout 7 on the loop and run a separate control wire from the frame to turnout 7 on the main and to connect it to lever 7.  See the result below.

Two of the brass ferrules were soldered together to enable both control wires to terminate on the one lever.

I was now able to adjust each turnout independently from each other.


Light engine movement through Kankool …

Hi all,

A few weeks ago, after connecting the newly laid track at Kankool to the DCC bus, I ran a test loco through the turnouts and was happy with the result.

Here is a short video of the movement.



Kankool frame installation – Part III …

Hi all,

Well, the Kankool lever frame is finally fixed in its position in the layout.

Whilst I was at the Liverpool model railway exhibition in Sydney over the October long weekend, Dale Richards made some modifications to the locking bed of the frame, as we had found some errors in the interlocking.

Upon returning home, I decided it was time to permanently mount the frame and connect the levers to the wire-in-tube, especially to the turnouts, so final testing and adjustments could be done.

I found that I also needed to make some changes to the direction of travel of some of the signal runs.  Eight of the signal runs require a “pull” rather than a “push” movement to enable the signal actuators to work correctly.

So, the cranks were disconnected from these levers, and new connecting rods made.

Below is a picture of the changes made.


Below is a picture of the frame now fixed in place with the redirected signal tubing clamped to a new mounting block.  The existing horizontal runs can also be seen.

I can now do final testing and adjustments to the turnout runs.


Kankool trackwork – Part IV …

Hi all,

Apologies for the long time between posts.

Since the last post, I have completed the trackwork at Kankool, which included completing laying of the CV tie bases, fixing down the two turnout assemblies and gluing rail to the CV ties.


The above pictures show both the Willow Tree end and Murrurundi end turnout assemblies now fixed in place.  Prior to fixing down, they were carefully washed in soapy water to remove any solder and flux residues, then painted with the Krylon flat brown paint.  I’m hoping it will provide the same flat base to allow for weathering later on.

Once the turnouts were in place, I could start laying the rail on the plain track sections.  The process is the same as was used when I laid the first section of CV ties and rail in the Temple Court section.  Refer to this post as a reminder.  The only difference now is that I am painting the rail with the Krylon prior to fixing in place.

Another extra task that is being done prior to painting the rail, is to add cosmetic fishplates.  I did not do this in the Temple Court section, but they will be added to the rail later and touched up with paint.

I am using 3D printed 6-bolt fishplates from Ray Pilgrim.  There are superglued every 40 scale feet along the rails.

They are a bit hard to see in the picture above, but I am hoping once the rail is weathered, they will stand out more.

To finish this post, below are a couple of shots of the finished trackwork looking from each turnout.


Kankool trackwork – Part III …

Hi all,

Following on from my previous post on the tiebar installation, I have been carrying out testing of the new tiebars and turnouts in situ.

As outlined in a previous post, the wire-in-tube (WIT) hardware were mounted on timber bases directly underneath the spline at each turnout location.

The wire from the turnout back to the lever frame was temporarily connected to the frame using brass screw ferrules from terminal blocks.

wire-in-tube termination at lever frame


During initial testing, I found that length of the vertical drive shaft attached to the brass block had too much flex in it to work the turnout reliably.  Due to the thickness of the spline at around 25mm, the resultant drive shaft length was around 30mm.  The image below shows the vertical drive shaft and brass block. (Note – image shows the revised drive shaft length)

drive shaft


It was also found that the length of tube attached to the underside of the tiebar was too long.  So this was reduced to around 3mm in length.

new tiebar throw tube length


To reduce the drive shaft length, I realised that a reduction in spline thickness would be necessary at each turnout location.

After carrying out some tests with different drive shaft lengths, I found that a length of around 15 to 17mm operated much more reliably.  I decided to reduce the spline thickness to 10mm.  This was removed quite easily with my multi tool and saw blade.  At one of the other locations, I had to use a router.

reduced spline thickness


Once the spline was cut away at each location, the previously made timber mounts for the WIT hardware were re-attached to the spline by gluing in place.


I am quite happy with the result, so the next stage will be to paint the turnouts and fix in place.

I have made a short video showing the turnout operating from the lever frame.



Kankool trackwork – Part II …

Hi all,

I have made more progress on the Kankool turnouts.  I have now fitted tiebars.

I have always wanted to have tiebars that look as realistic as possible, within the bounds of practicality for HO scale and reliable operation.

Ever since I saw a post on Rene Gourley’s Pembroke blog, I have wanted to achieve a similar result.  Here is another link to a photo of his tiebars in situ.

Some time ago, Rene kindly sent me one of his 3D printed tiebars.  I had planned to look at his design and see if it could be adapted to my new track standards.

I put the whole thing on the back burner for a while, but resurrected it nearly 12 months ago when it was getting to the point that I was going to need something to be able to complete the turnouts.

I put the idea to a mate who is a bit of an expert on 3D design.  He thought the idea had merit, so I left it with him to come up with a design.

Over the last few months however, I began to have reservations about the 3D print idea.  Because the plastic tiebars would have to be glued to the points, I was worried about the mechanical strength of such a bond.  Also, as the 3D printing thing is still relatively new, the materials are untested over time.  Will they deteriorate over the next twenty years?

When Andrew and I built the P87 turnouts for Bowen Creek, we used thin pieces of printed circuit board that would allow for a soldered joint to the points.  So began the manufacture of a prototype.



My design uses brass strip soldered together in a similar design to Rene’s.  It still allows the tiebar to slide underneath the second sleeper back from the toe.  It also has a drive tube underneath into which the wire-in-tube turnout activator will fit.

I had to have a method of holding the tiebar underneath the turnout whilst soldering to the points.  So, using a piece of old melamine shelving, I marked out and routed a recess for the tiebar to sit in.

tiebar in place in recess


The turnout was then located over the tiebar and clamped in position.


Soldering the points to the tiebars requires a great deal of care.  It is very easy to solder the points to the stockrails!  To reduce the risk of this, and also to reinforce the soldered joint, small pieces of brass strip are soldered to the tiebars then to the points.  The point is clamped against the stockrail then the brass strip carefully soldered in place.


Once the first point is soldered in place, the turnout is repositioned so the other point can be fixed in position.  Again, the point is clamped to the stockrail, and ensuring the opposite point is the correct distance from the stockrail to allow for wheel clearance, the second point is soldered in place.

The finished tiebar!  It is then tested for binding and to ensure both points sit snugly against each stockrail.  The turnout can then be removed from the melamine base.  The plan is to temporarily clamp the turnout in position on the roadbed and connect the actuator and test the operation using the wire-in-tube.  Once it is proven to work effectively, the turnout will be painted and prepared for final installation on the roadbed.

A similar recess for the tiebar was routed out in the cork roadbed at each location.



Chilcott’s Creek bridge assembly – Part VI …

Hi all,

A brief update on some more progress on the Chilcott’s Creek bridge scene.

The bridge abutments are now fixed in position, and most of the foam is also fixed down.


I also did some more weathering to the bridge piers.  Following on from the previous Part V post, the rust streaking was done using oil paints and turps to drag the colours down the piers.


I’m quite happy with the results with some more work to be done.


Kankool frame installation – Part II …

Hi all,

I’ve done some more installation of the Wire-in-tube (WIT) system for points and signals at Kankool.

Some timber bases were made to fix the WIT hardware to underneath the spline at the Willow Tree end of Kankool loop.

These have been made adjustable to allow for final tweaks when the turnout throwbars are installed.

The photo below shows the mounting block for the WIT signal hardware for the two Down starters on the left hand side, as well as the mounting block for the WIT point hardware for the runaway turnout in the loop and the mainline catchpoint.

Bases for fixing of WIT hardware


The next photo shows a shot from underneath the spline of the mounting block for the Up Home Main & Loop bracket signal and the mainline turnout to the loop.

Base for fixing of WIT hardware


The next photo shows a shot above the turnout complex at the Willow Tree end.  The loop of WIT that can be seen is to connect both mainline and runaway points to a single cable (lever #7).


This now completes the WIT installation for the Willow Tree end of Kankool.  Scenery installation can now commence in this area.


Chilcott’s Creek bridge assembly – Part V …

Hi all,

I have recently been redoing the weathering on the Chilcott’s Ck bridge abutments and piers. I wasn’t happy with my first attempt using the acrylic crayon powders quite a while ago.  So, this time using oil paints, I applied an all over light grey colour using a stippling brush and I think it has produced a neat effect.  Then using other colours like black, white and more grey, I have again stippled over the top for a random effect.  For the rust staining, I used the oils again but washed them down with turps.  Again pretty happy with the results so far.

abutment weathering take 2

abutment weathering take 2


I have also finished the “base” grey coat on the piers and will let that dry before moving onto the rust staining.

pier weathering take 2


I have also made some more progress on the Chilcott’s Ck bridge scene over the last few days.  A slight change of plans to what I mentioned previously, in that I have decided to fix the timber sub-module base in place then add the scenery foam around and on top of it.  The abutments will then be fixed in place, along with the piers.  Scenery including dirts and grasses will then be applied, and hopefully some ‘water’ in the creek!  The bridge span will then be fixed in place once all this has been completed.  Pictures show all the foam pieces and the sub-module base temporarily in place.

A plywood base was fixed in place to provide support for the foam.

plywood base and sub-module in place


With the bridge sub-module sitting in place, a jigsaw of various pieces of foam were cut to fit.  First off were two pieces front and back to continue the creek bed, which was drawn in and then routed out to the same depth as on the timber sub-module.

creek bed foam in place


Then other pieces of foam were cut and shaped to fit the previously made pieces under the bridge.


The last two pictures show the bridge span and piers temporarily in place to give an idea of how the scene will look.  Final shaping of the foam will be done when the pieces are fixed down.


Chilcott’s Creek bridge assembly – Part IV …

Hi all,

Recently I have continued work on the Chilcott’s Creek bridge scene.

Back in December 2014, I made a post where I had started to weather the bridge piers and abutments.

I was never really happy with how the colour on the abutments had turned out, so I decided to redo them.

Using some new oil based paints and some new techniques, I mixed up a new lighter colour of grey and applied to the abutments.  I am happy so far with the result.  The paint was stippled on and has given a rougher surface appearance.  I’ll redo the rust stains as well.  I think I will also redo the piers.

I also added the small extensions to the wingwalls.

re-done abutment weathering

re-done abutment weathering


The plan was always to build the bridge on a sub-assembly and then slot it into place.  As the base of the sub-module needed to be near to perfectly flat, I decided to laminate a piece of 3-ply to another piece of hardwood.  I roughly marked out the future riverbed and removed the first layer of ply using a router.  My idea is to eventually try my hand at some model water.

Chilcott's Creek riverbed

Chilcott's Creek riverbed


I have also started on forming the scenery around the bridge.  The idea is to form up the base scenery foam, add the dirts, grasses etc then assemble the bridge, fix the sub-assembly into the layout, levelling up as I go.  Anyway, we’ll soon see if that plan works!!

Scenery forming around bridge

Scenery forming around bridge

Scenery forming around bridge

The last photo shows the bridge & piers temporarily in place.  You get the idea!!


Some months ago I started laying tieplates on the bridge and have fixed one rail in place.  I had been thinking of ways to do it easily, including making a jig, but Andrew suggested I just line them up against a straight edge.

The frets of the tieplates were masked off where the base of the rail sits, painted with some Krylon flat brown paint, then dusted a ‘rusty’ colour with some powders.

The underside of the tieplates were then coated with Pliobond glue.

sleeper plate masking

sleeper plates painted


The individual tieplates were then cut out and located on the transoms, one at the end and the other about 40 transoms away.  Using a soldering iron, the tieplates are bonded to the transoms. The heat activates the Pliobond.  This then gave me two points to line the straight edge against.  The straight edge was clamped to the bridge.  More tieplates were then bonded to the transoms.  The process was repeated along the bridge.

laying out the sleeper plates

bonding the sleeper plates to the transoms


The next step was to fix one length of rail to this first run of tieplates.  This was done by applying the Pliobond to the underside of the rail as well as the tops of the tieplates, then locating the rail in position and carefully applying heat to the top of the rail using an old clothes iron and gradually moving along the length of the bridge.  The bond appears to be OK so far.

The plan is to then, using gauges, locate more tieplates underneath the second rail and repeat the above process.


%d bloggers like this: